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We consider horizontal static liquid layers on planar solid boundaries and analyse 
their instabilities. The layers are either evaporating, when the plates are heated, or 
condensing, when the plates are cooled. Vapour recoil, thermocapillary, and rupture 
instabilities are discussed, along with the effects of mass loss (or gain) and non- 
equilibrium thermodynamic effects. Particular attention is paid to the development 
of dryout. We derive long-wave evolution equations for the interface shapes that 
govern the two-dimensional nonlinear stability of the layers subject to the above 
coupled mechanisms. These equations are analysed and their predictions discussed. 
Previous theoretical and experimental results are reviewed and compared with the 
present results. Finally, we discuss limitations of the modelling and extend our 
derivation to the case of three-dimensional disturbances. 

1. Introduction 
A liquid layer lies on a planar, solid boundfry. There is a mode of instability 

present when the layer is ultra-thin (100-1000 A) which is driven, even in a static 
layer, by long-range molecular forces due to van der Waals attractions (Sheludko 
1967) and results in the rupture of the layer. Such a film possesses a difference in 
chemical potential with respect to a large phase of the same material, resulting in a 
corresponding change in all intensive thermodynamic properties. Deryagin first 
recognized the thermodynamic significance of dimension ; he terms as ' disjoining 
pressure ' the excess pressure in a thin layer compared with that in a phase of infinite 
extent (Deryagin & Kusakov 1937 ; Deryagin 1955). A negative disjoining pressure 
is characteristic of a film having a higher pressure than the bulk phase, as when long- 
range molecular forces due to  van der Waals attractions are considered. In  that case 
spontaneous thinning occurs, and the film interfaces decrease in separation distance. 
When electric double-layer forces are considered, the added disjoining pressure 
component is positive and the competition between these and the van der Waals 
attractions can lead to the formation of black films (Overbeek 1960). 

Lifshitz (1955) constructed a general macroscopic theory of the attractive van der 
Waals forces between bodies whose characteristic dimensions are large relative to  
interatomic distances. He found that the force of mutual attraction acting on unit 
surface of each of the bodies is inversely proportional to d3 or d4, when the separation 
distance d is small or large, respectively, compared with the wavelengths that are 
important in the absorption spectra of the bodies. Application of the methods of 
quantum field theory makes it possible to find the general formulae for the 
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calculation of the van der Waals part of the thermodynamic quantities for an 
arbitrary inhomogeneous medium (Dzyaloshinskii & Pitaevskii 1959). This allows 
t'he t'heory of Lifshitz to be extended to bodies separated by a liquid layer, and leads 
to its application to the study of liquid films (Dzyaloshinskii, Lifshitz & Pitaevskii 
1959). 

The problem of finding the thickness a t  which a non-thinning film becomes 
unstable owing to van der Waals forces was considered by Vrij (1966), who used a 
stlatic stability analysis to calculate a marginally stable thickness a t  which small 
disturbances first start to grow. A dynamic linear stability theory for an isothermal 
film on a horizontal platc (Ruckenstein & Jain 1974), based on the Navier-Stokes 
equations modified with an extra body force due to van der Waals attractions, shows 
that, an initial disturbance periodic along the bounding plane has a critical 
wavelength much larger than the mean depth of the layer. Gumerman & Homsy 
(1975) examined the linear stability of radially bounded thinning free films for which 
the base state is a time-dependent drainage flow computed by lubrication theory. 
Williams & Davis (1982) posed a nonlinear stability theory based on the long-wave 
nature of the response. They derived a partial differential equation which describes 
the evolution of the interface shape subject to surface tension, viscous forces, plus 
van der Waals attractions. Davis (1983) discussed the generalization of the result to 
a (non-volatile) film on a heated plate, accounting for thermocapillary and gravity- 
wave effects. 

When the plate is heated, the latent heat required for evaporation is balanced by 
the heat flux across the liquid film, and large temperature differences may be 
maintained. This allows the rapid removal of heat from the hot surface. 
(Condensation involves a similar but oppositely directed transfer of latent heat.) 
New modes of instability develop a t  an evaporating liquid surface (Hickman 1952, 
1972; Palmer & Maheshri 1981). Hickman noted that vapour recoil can induce 
hydrodynamic instability. Since a fluid particle conserves its mass flux upon phase 
change, a slowly moving liquid particle a t  the interface accelerates greatly when it  
becomes vapourized ; the vapour particle has much lower density than does the liquid 
particle. The back reaction on the interface is called vapour recoil. A disturbance in 
the evaporating interface can result in a local increase in the evaporation rate a t  a 
surface depression or 'trough ', producing a local increase in the normal force due to 
vapour recoil. The associated pressure gradient drives liquid towards the ' crests ', 
amplifying the disturbance. In a similar manner, a disturbance in a condensing 
interface can result in a local increase in condensation. The condensing fluid particles 
likewise exert a destabilizing normal force. 

An int'erpretation of instabilities associated with a moving boundary was given by 
Miller (1973), who examined the linear stability of an evaporating interface subject 
to the restriction that t'he interfacial temperature remains constant while the local 
rat>e of phase t,ransformat>ion is perturbed. Palmer (1976) expanded Miller's result to 
include the more realistic condition of a liquid whose evaporation rate depends on the 
int,crfacial temperature. If the depressed region experiences a local increase in surface 
temperature, t)hc?n the induced gradient in surface tension induces a thermocapillary 
flow of warmer liquid from the trough to the cooler crest's to amplify the disturbance ; 
this is a mode of Marangoni instability (cf. Davis 1987). A more recent linear stability 
analysis for a rapidly evaporating liquid surface has been carried out by Prosperetti 
& Plesset (1984). They trcat the liquid and vapour as inviscid fluids and obtain the 
perturbation growth rabe as a function of the wavenumber. Higuera (1987) 
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generalized the analysis to include the effects of fluid viscosities when the vapour-to- 
liquid density ratio is small. 

Bankoff (197 1 )  studied the linear instability of an evaporating liquid film draining 
down an inclined heated plate. The film thickness is assumed to be so small that the 
Pdclet number is small compared with unity, and the thermal time constant of the 
undisturbed film is small compared with either the convective time constant or the 
wave, period. The evaporating interface is assumed to  be always a t  the saturation 
temperature. Subsequent investigators (Marschall & Lee 1973 ; Unsal & Thomas 
1978) removed the limitation of small PBclet numbers. They also included some 
additional effects, such as the liquid-momentum flux into the evaporating interface, 
that are omitted in the Bankoff analysis and which turn out to be small unless the 
pressure is very high. Spindler, Solesio & Delhaye (1978) pointed out and rectified 
deficiencies in the balance equations used by Bankoff (1971) and Marschall & Lee 
(1973). Spindler (1982) later reconsidered the full linear stability problem, taking into 
account the development in the mean thickness of the film due to evaporation as it 
drains down the wall, and also including the induced vapour shear stress. The 
numerical results obtained are similar to those obtained previously. 

Clearly, the breakdown of a liquid layer into one with dry regions can occur in 
complex systems in which the rupture instability interacts with other instabilities. In  
fact, if one has a relatively thick film, one instability can create locally thin areas in 
the layer in which the van der Waals attractions can become effective in driving the 
layer to rupture. Thus, there can be a two-stage process, viz. a dynamical thinning 
followed by a rupture instability. We pursue this line of inquiry here for a static 
horizontal layer heated from below. The film is assumed to be initially thick (say, 
0.1 mm thick), but it evaporates until it is much thinner (say. 0.1 pm thick). After the 
thinning of the film due to evaporation, there follows further non-uniform thinning 
due to the disjoining pressures induced by van der Waals attractions, which can 
cause rapid rupture of the very thin film. I n  this later stage, disjoining pressures can 
cause local rupture, or evaporative effects can cause dryout due to mass loss or 
vapour-recoil instabilities. We examine these conditions by extending the nonlinear 
theory developed by Williams & Davis (1982) to include evaporative, thermo- 
capillary, and non-equilibrium effects, in addition to disjoining pressures induced 
by van der Waals attractions. Effects of condensation are similarly considered. 

2. Formulation - one-sided model 
We consider a thin viscous liquid layer bounded above by its vapour and below by 

a uniformly heated rigid plane. The layer is thin enough that gravity effects are 
negligible and van der Waals attractions are effective, but thick enough that a 
continuum theory of the liquid is applicable. The film is non-draining and laterally 
unbounded, and consists of an incompressible Newtonian fluid with constant 
material properties. The layer is evaporating, so that a t  the vapour-liquid interface 
there is mass loss, momentum transfer, and energy consumption. 

The configuration is shown in figure 1 ,  where Cartesian coordinates are used to 
describe the system, taken for convenience to be two-dimensional. The vapour-liquid 
interface is located a t  z = h(x,t), where z is the vertical coordinate, and the film 
thickness h is a function of the lateral coordinate x and time t .  The solid plate is 
located a t  z = 0. J(r,t) is the mass flux due to  evaporation, T(I)(x,  t )  is the 
temperature of the interface, and TH is the (constant) temperature of the heated 



466 

n J 

J .  P.  B,urelbach, S .  G .  Bankoff and S .  H .  Davis 

\ 
01 

Solid \\\\ \ 
FIGURE 1. The physical configuration describing an evaporating thin liquid film on a horizontal 

heated solid surface. 

plate. The unit vectors n and t are the outward normal and tangent vectors, 
respectively : 

n =  (--hZ,1)(1+h:)-i, t =  (I,IQ(I+~~)-~. (2.1 a ,  b )  

Liquid is assumed to evaporate in a direction normal to the interface. 
The liquid is taken to be a charge-neutral dielectric, such that electrica.1 double- 

layer forces are negligible. The van der Waals forces are represented through the 
potential function 4 which depends on the layer thickness : 

4 = W). (2.2) 
We follow Ruckenstein & Jain (1974) and augment the Navier-Stokes equations for 
the liquid with an extra body force, V#, that  models the van der Waals attractions: 

p ( v , + v . V v )  = -Vp-V$4+pV2v, (2.3) 

where p is the liquid density and p is the dynamic viscosity. Here p denotes the 
pressure in the liquid, and v is the liquid velocity vector with components u and w 
in the x- and z-directions, respectively. Unless otherwise indicated, all quantities 
mentioned hereafter refer to the liquid phase. 

The continuity and energy equations in the liquid are 

v-v = 0, (2.4) 

and f v .  UT = K V T ,  (2.5) 
respectively, where K is the thermal diffusivity and T is the temperature. The Navier- 
Stokes, continuity, and energy equations for the vapour are similar to (2.3)-(2.5), but 
with suitable modification and neglect of van der Waals forces. 

At the heated solid boundary, z = 0, we assume no slip: 

v = 0 ,  (2.6) 

and a constant temperature : T = TH. (2.7) 

At the interface, z = h(x,t), there are the vapour-liquid jump conditions (cf. 

(2.8a, b) 

Delhaye 1974). The jump mass balance is 

J = p( v - ~ ( 1 ) )  . n = pW)( v(v) - ~(1)). n, 
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where v(v)  is the vapour velocity, v(r) is the velocity of the interface, and the vapour
density p(“1 is assumed constant. There is also the jump energy balance:

J{L+$-(v “‘-v(“).  n]” -+[(v- ,(I’).  n]2} + kVT. n - ,$‘“’  VT’“‘. n

+2~(7’n).(v-vv’*‘)-2~‘“‘(7’V’.n).(v’”’-vv’~’)  = 0, (2.9)

where 7 and @‘)  are the rate-of-deformation tensors in the liquid and vapour,
respectively, L is the latent heat of vaporization, T(“) is the vapour temperature, and
Ic  and L(“) are the thermal eonductivities of the liquid and vapour, respectively. The
normal-stress boundary condition,

J(v-v’“‘).n-(T-T’“‘)+z-n = 2Hr(T), (2.10)

balances the jump in normal stress with surface tension c times twice the mean
curvature H of the interface,

2H = I7.n. (2.11)

Here T and Tcv)  are the stress tensors of the liquid and vapour, respectively. The
shear-stress boundary condition,

J(v-vcv))+(T-T’“‘)+z~t = -Vg.t, (2.12)

balances the jump in shear stress with the surface-tension gradient.
Surface tension is represented by a linear equation of state,

CT = cro-y(T”‘-T,), (2.13)

where c,,  is the surface tension at the reference temperature T,,  taken as bhe
saturation temperature at the system pressure. For nearly all common liquids
y = - dg/dT is positive. We assume no slip at the interface between the two viscous

(v- ZF) * t = 0.

The linearized constitutive equation,

J = iq) (8)” (T”‘-T,),

(2.14)

(2.15)

is derived from kinetic bheory  (cf. Palmer 1976). It relates the mass flux J at the
interface to the local surface temperature T(I), where M, is the molecular weight,
R, is the universal gas constant, and 01 is the accommodation coeficient.

Finally, appropriate initial conditions must also be specified for the film thickness
and the velocity and temperature fields.

Having formulated the two-fluid problem (without boundary conditions at the top
of the vapour layer), we consider a limiting case and assume that density, viscosity,
and t’hermal  conductiviby are all much greater in the liquid than in t,he  vapour.
Formally, we take the limits

P W’
-----to,

/p, #zp’
--0, --0.

P k
(2.16a-c)

P

However, we retain the vapour density in (2.8b) where it multiplies the vapour
velocity, which may be large. (This is similar in spirit to the Boussinesq
approximation of thermal convection, in which density variations are neglected
except in association with gravity.) However, we assume that’ the vapour velocity is
sufficiently slow (small Mach number) that t’he  vapour and liquid may bot’h  be
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treated as incompressible Newtonian fluids. The stress tensor in the liquid is written
as

T = -p/f  2/m, (2.17)

where / is the identity tensor; a similar form is used for the vapour stress tensor.
Finally, we take the pressure in the gas, p(‘),  to be zero.

The jump conditions at the vapour-liquid  interface are simplified as follows. In the
jump energy balance (2.9) we express velocities in terms of the mass flux and density
by substituting from the jump mass balance (2.8a, b). We assume VT@‘).n,  ~.n*n,
and .cv).  n.  n are all bounded and apply the limits (2.16) to get

J{L+;  [-&J} = -kVT.n, (2.18)

which states that the heat conducted across the film is used to vaporize liquid and
impart kinetic energy to the vapour particles. In the normal-stress balance (2.10) we
again substitute for velocities from the jump mass balance and apply the limits
(2.16a,  b) to get

-$- T-n-n  = 2H@T), (2.19)

where the term proportional to J2  results from vapour recoil. In the shear-stress
balance we use the no-slip condition (2.14) to eliminate the first term on the left-hand
side of (2.12). Substituting for the stress tensors as before and applying the limit
(2.16b), we get simply

T-net  = Vast. (2.20)

The remaining jump conditions, (2.8) and (2.15),  remain unchanged, as do the
boundary conditions at the solid plate.

The dynamics of the vapour are thus decoupled from the dynamics of the liquid,
yielding what we call the on.e-sided  model of evaporation. This one-sided model
extends that posed by Spindler et aE.  (1978) for a falling film to include non-
equilibrium effects, van der Waals attractions, vapour kinetic energy and a full set
of boundary conditions. This is the starting point for our analysis.

3. Scaling of the one-sided model
We now non-dimensionalize the governing equations and boundary conditions.

Length is scaled on the mean film thickness d, at the initial time t = 0. Viscous scales
are chosen for time, velocity, and pressure. These are, respectively, di/u, v/d,, and
pv”/di,  where v is the kinematic viscosity of the liquid. These scales are appropriate
to an isothermal layer in which surface tension, viscosity, and van der Waals
attractions influence film rupture (cf. Williams & Davis 1982). They should also
apply when the layer is non-isothermal and the evaporation is not too intense. The
saturation temperature T,  is again taken as a reference, and the temperature
difference 7’  - T, is scaled on the temperature difference AT = TH--Ts.  Mass flux is
scaled on its initial value for a linear  temperature profile across an initially flat film,
viz. k AT/d0 L. In addition to the viscous timescale, there is also an evaporative
timescale : t,  = pdi L/k AT. Although this evaporative scale is not employed in the
initial scaling, it does appear in the scaled equations through a parameter E, which
is the ratio of the viscous to evaporative timescales. Since the viscous timescale
t,  = di/v is assumed to be much shorter than the evaporative scale, this ratio is
small.
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The Navier-Stokes and continuity equations are 

and 

vt i- V . V V  = -Vp-V$4+ V'V 

V - v  = 0. 

(3.1) 

(3.2) 

We follow Ruckenstein & Jain (1974) and write the potential function $4 as 

$4 = Ah-3, (3.3a) 

where the exponent is chosen for convenience and the dimensional Hamaker 

A' A = -  
6 4 ,  pv2 ' 

constant A' is-related to A by 
(3.3b) 

Xote that this potential for the van der Waals attractions is independent of z .  We 
consider here the case A' > 0, usually called the case of negative disjoining pressure, 
which corresponds to a destabilizing van der Waals force. The scaled energy equation 
is 

(3.4) 

whcre P is the Prandtl number 
Y = V / K .  (3.5) 

P(T, + v ~ V T )  = V'T, 

At the heated solid surface, 2 = 0, the boundary conditions are 

v = O ,  T=l. (3.6a, b)  

At the interface, z = h(r, t ) ,  the scaled jump mass balance is 

EJ = (v-u(I)) .n = $D(v(")--(')).n. (3.7a, b)  

We term the ratio of the viscous to evaporative timescales the 'evaporation 
number ', kAT 

E = - -  (3.8) PlJL ' 

For slow evaporation E is small. The parameter D is proportional to  the ratio of the 
vapour to liquid densities, 

(3.9) 

In  most cases D is very small. The scaled energy jump is 

J + (E2D-22-1) J 3  = - VT .n ,  (3.10) 

where 

is a measure of the latent heat. The scaled normal-stress condition is 

-iE2D-1J2+p-2T-n-n = 3S(l-CT)V.n. 

The non-dimensional surface tension S is defined as 

(3.11) 

(3.13) 

(3.13) 

while the capillary number c! is given by 

(3.14) 
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The scaled shear-stress condition is 
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r . n . t  = - M P - I V T . t ,  (3.15) 

were M is the Marangoni number, 

We also have the scaled constitutive equation, 

KJ = T ,  

where 

(3.16) 

(3.17) 

(3.18) 

The parameter K measures the degree of non-equilibrium a t  the evaporating 
interface. K = 0 corresponds to  the quasi-equilibrium limit, where the interfacial 
temperature is constant and equal to the saturation value, T = 0. K-'= 0 
corresponds to the non-volatile case in which the evaporative mass flux J is zero. 

In  component form, the scaled governing system is as follows. The x- and z- 
components of the Navier-Stokes equation are, respectively, 

and 

Ut + uu, + U'U, = - ( p ,  + 4,) + u,, + u,, 

I d t  + uw, + ww, = -pz  + w,, + wzz. 

The continuity equation is 

and the energy equation is 
u,+w, = 0, 

P(Tt + uT, + WT,) = T,, + Tzz. 
The boundary conditions at the solid surface (2  = 0) are 

(3.19) 

(3.20) 

(3.21) 

(3 .22)  

u=O, w = O ,  T = l .  (3.23a-c) 

At the interface ( z  = h)  we have, from the jump mass balance, 

EJ = (-hh,-uh,+ui)(l+h~)-t, (3.24) 

which is the kinematic boundary condition for an interface that is not a material 
surface. The energy balance is 

J + (E2D-22'-1) J 3  = (T, h, -Tz) ( 1  + hz)-t. (3.25) 

The normal-stress condition is 

- $E2 D-'J2 + p  - 2 [ ~ , ( h i  - 1 )  - h,(u, + w,)] ( 1  + h:)-' = - 3S( 1 - CT) h,,( 1 + h:)-t, 
(3.26) 

and the shear-stress condition is 

(u, + w,) ( 1  - h:) - 4~, h, = - 2MP-l(T, + T, h,) ( 1  + h;);. (3.27) 

The constitutive equation remains KJ = T. (3.28) 

As a result of the scaling, several non-dimensional groups appear in the problem. 
Typical numerical values and the material properties from which they are computed 
are presented in table 1 for water and ethanol. 
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P (MPa) 
Ts (K) 
do (em) 

P (g/cm3) 
P'v' (g/cm3) 

AT ("C) 

v (cm2/s) 
dV) (cm2/s) 
k (erg/cm s "C) 
kCv' (erg/cm s " C )  
K (cm2/s) 
K(") (cm2/s) 
L (J/g) 
M ,  (g/gmole) 
go (dynes/cm) 
y (dynes/cm "C) 
A' (erg) 

A 
c 
D 
E 
K 
Y 
M 
P 
I ! !  

c 
9) 
,K 
G 

Water 

0.10 1 
373 

10 
0.96 
0.6 x 10-3 
3.0 x 10-3 

2.4 x 103 
1.7 x 10-3 

2.3 x 103 

0.21 
6.8 x lo4 

0.2 

18 
59 
0.18 
10-13 

10-3 

10-3 

103 
10 

10-1 
1 
1 
104 
105 
105 
10-11 

Ethanol 

0.101 
352 
10-6 
10 
0.79 
1.6 x 10-3 
5 x 10-3 

1.7 x 104 
1.7 x 103 

0.62 

8.8 x 
0.07 
8.8 x lo2 
46 
20 
0.9 
10-13 

10-4 

10-3 
10-3 

10-1 

1 
1 o2 
1 
10 
10-1 
104 
104 
lo6 
10-11 

TABLE 1. M9terial properties and dimensionless groups for liquids a t  1 atm. In each case the film 
is 100 A thick and the plate temperature is 10 O C  above the saturation temperature Ts. 

4. Basic state 
Since the heated film is evaporating, the basic state is time-dependent ; we denote 

basic state quantities by an overbar. The basic state is assumed to be static with a 
flat evaporating interface. Thus there is no dependence on the lateral coordinate x, 
and the basic-state velocity field is zero. The Navier-Stokes equation (3.20) is 
simply 

pZ = 0, 

while the energy equation (3.22) is 
PZ = qZ. 

At the solid boundary, z = 0, condition (3 .23~)  remains 

T =  1. 

At the interface, z = @t) ,  the kinematic boundary condition (3.24) becomes 

EJ = - E t ,  
while the energy jump (3.25) is 

(4.3) 

(4.4) 
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The jump in normal stress (3 .26)  is 
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2 (4.6) p = 0, 

K J = T  (4.7) 

3E2D-1J2 + - _ -  

and there is no shear stress in the basic state. The constitutive equation (3.28) 
remains 

To retain the effect of mass loss in the kinematic condition (4.4), we rescale time 
on the evaporative scale : 

t' = Et,  Z' = Z.  (4.8a, 6) 

The mass flux J ( t ' )  and liquid temperature T(z' ,  t') are assumed to  be of order unity, 
but we take pressure p( t ' )  to be of order E - l .  These dependent variables are expanded 

J =  Jo+EJ,+E2J2+ ..., (4.9a) in powers of E :  

T =  To+ET,-+E271,+ ..., (4.9b) 

p = E-l(p,+Ep,+ ...), (4.9c) 

while the film thickness h(t') is considered an unspecified order-one function. In order 
to retain vapour recoil in the normal-stress balance, the relationship between the 
small parameters D and E is assumed to be of the form 

D = DE3, (4.10) 

where D is an order-one quantity. Table 1 indicates that  the parameter 9 is typically 
quite large. We therefore assume 

9 - l  = o(1) (4.1 1)  

so that the kinetic energy in the jump energy balance is neglected. 

(4.1)-(4.7), the leading-order system governing the basic state becomes 
After applying the transformation (4.8) and subst'ituting expansions (4.9) into 

2' = 0 

2' = h(t') : 

along with the initial condition - 
t ' = O :  h = l .  

(4.12) 

(4.13) 

(4.14) 

(4.15a) 

(4.15b) 

(4 .15~)  

(4.15d) 

(4.16) 

Note that, in this small-E limit, (4.13) describes a quasi-steady temperature field. 
The resulting leading-order basic-state solution is 

(4.1 7a,) 

(4.17b) 
(4 .17~)  
(4.17d) 

Figure 2 details the bchaviour of this solution for quasi-equilibrium (K = O), non- 
equilibrium (K + 0) and non-volatile (I?' = 0) cases. 
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J 

(1 + 

tit, 
1 

FIGURE 2. Basic-state behaviour for various degrees of non-equilibrium evaporation. 

4.1. Quasi-equilibrium caSe (A' = 0) 

According to (4.17a), when h' = 0 the film thickness 6 w (1  -2Et)i goes to zero with 
velocity Lt- - -oo  a t  the disappearance time t ,  = 1/2E (figure %a).  The evaporative 
mass flux J w (1 -2Et)-i is initially unity but becomes unbounded a t  t = t, (figure 
2 b ) ,  since the temperature difference across the vanishing film is a fixed constant 
(figure 2 c ) .  Thus, singularities occur in (4.17), since J +  00 as t + t D  and 27 depends 
directly on the vapour recoil. The solution (4.17) breaks down near disappearance 
because the higher-order terms of (4.9) become comparable with those of leading 
order. 

The basic-state temperature profile does not satisfy the arbitrary initial 
temperature condition T(z, 0) = &(z),  since, in the formal limit E+ 0, the 
temperature field satisfies the quasi-steady conduction equation (4.13). 

The non-uniformities a t  early and late times can be analysed by the introduction 
of boundary layers in O(E) neighbourhoods near t = 0 and t = t,. Multiple scales and 
matched asymptotics may then be used to find the inner solutions. Details are given 
by Burelbach (1989). We find that the initial temperature field adjusts in a time of 
O(E) to the linear (quasi-steady) profile, and negligible evaporation occurs during 
this adjustment period. A late-time analysis yields a solution that breaks down at  
higher order. However, since we expect disturbances to grow or decay much faster 
than the basic-state film thickness goes to zero, this late-time limitation does not 
seriously affect our analysis. In any case, a t  late times the lubrication approximation 
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that we employ is not valid since the film thickness does not vary slowly with 
time. 

4.2. Non-equilibrium case ( K  + 0 )  
When K + 0 and finite, the film approaches zero thickness with finite velocity a t  the 
time t ,  = (1 + 2 K ) / 2 E  (figure 2a) .  The mass flux is initially (1 +K)-l  but increases to  
K-l at  the disappearance time (figure 2 b ) .  The temperature difference across the 
thinning film is initially (1 +K)-' but decreases to zero as the film disappears and the 
interface temperature T, approaches the wall temperature TH (figure 2 c ) .  Singularities 
again ocrur in (4.17), a t  time t = (1 +h')'/2E, but by then the film has already 
disappeared. Once again the satisfaction of arbitrary initial temperature data 
requires resraling near t = 0. 

4.3. Non-volatile case (K-l = 0 )  
When K-l = 0, no evaporation occurs (figure 2 6 )  since there is a zero temperature 
gradient across the film (figure B c ) ,  and the film thickness remains a t  unity (figure 
2U). 

5.  Long-wave theory 
The dynamic linear stability analysis of Ruckenstein & Jain (1974) shows for the 

isothermal problem that the initial instability, periodic along the bounding plane, has 
a critical wavelength much larger than the mean thickness of hhe liquid layer. 
Williams & Davis (1982) describe the interfacial deflection of this instability by a 
nonlinear stability theory based on t'he long-wave nature of the response. This 
method is related to those used by Benney (1966) and Atherton & Homsy (1976) for 
isothermal falling films in the absence of long-range forces. 

We now consider the non-isothermal, evaporating layer and assume that the 
dependent variables vary slowly along the plate and in time so that lubrication 
theory may be used. Such an approximat'ion excludes those small time intervals near 
t = t, and t = 0 where the basic state may be non-uniform in time; inside these 
regions the temperature profile or the film thickness change rapidly. We consider 
long-wave disturbances periodic in x and define as a small parameter the wavenumber 
k. We rescale the governing system consistent with lubrication theory by writing 

c = k x ,  C = Z ,  ~ = k t .  (5.1) 

We assume that u, J ,  !l' = O(1) but require that 10 = O(k)  as k - -  0 to preserve 
continuity; to examine spontaneous rupture we take both p .  c$ = O(k-l)  as k+0. 
These dependent variables are expanded in powers of k :  

u = u,+ku,+ ..., u, = k ( w o + k u J l +  ...), (5.2a, b) 
J=J ,+kJ ,+  ..., T=TO+Wl+ ..., ( 5 . 2 c , d )  

p = k-l(p,+ kpl+ ...), @ = k-l@o, (5.2 e , f )  

while the film thickness h(c , r )  is considered an unspecified unit-order function. We 
proceed with the asymptotic analysis by substituting expansions (5 .2)  into the 
governing system. We equate to zero the coefficients of like powers of k in each 
equation and boundary condition and obtain a sequence of problems. We then 
determine the mass flux and velocity field as functions of film thickness. These 
solutions are substituted into the jump mass balance (i.e. the kinematic boundary 
condition) to obtain an equation describing the evolution of the interface. 
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Table 1 indicates that the parameter Y is typically much larger than the quantity 
E2D-2, so that kinetic energy is neglected in this analysis. To include all the 
remaining physical effects that appear in the one-sided model we assume that A ,  D ,  
E ,  M and S are related to k as follows: 

( A ,  D ,  E ,  M ,  S )  = (Ak-', Dk3, E k ,  iWk-', Sk-3) (5.3) 

where quantities with overbars are 0(1) as k +  0. To examine spontaneous rupture we 
follow Williams & Davis (1982) and take A = O(k- l ) .  We let E = O ( k )  to include mass 
loss and D = O(k3)  to retain vapour recoil. These last two assumptions allow us to 
formally neglect kinetic energy by assuming 

3-l = 0(k4). (5.4) 

We assume M = O(k- l )  to retain the thermocapillary effect in the shear-stress 
condition and S = O(kP3)  to retain the effect of surface tension in the normal-stress 
condition. Note, however, that SC = $k2,@P-l, so that when the shear stress is 
balanced by the surface-tension gradient, thermocapillary effects do not appear a t  
leading order in the normal-stress balance. Finally, we require both K ,  P = O( 1 ) .  

At leading order in k ,  the governing system is 

- Po5 - $0, + Uocs = 0, 

-Poc = 0, 

u, +wo = 0, 
5 5  
T = O ;  

u0 = 0, w0 = O ,  To = 1 ;  
O K  

-2 -_ p ,  = $E D V;-3Shtt7 
uOs = - 2iEP-1(T05 + Tos hs), I KJ, = To. 

(5 .5)  

(5.6) 

(5.7) 

(5.8) 

(5.9 a<.) 
( 5 . 1 0 ~ )  
(5.10b) 

(5 .10~)  
(5.10d) 
(5.10e) 

Equations (5.5)-(5.10) yield a long-wave evolution equation which governs the 
nonlinear stability of the liquid layer subject to thermocapillary, evaporative, and 
rupture instabilities. We first solve (5 .8)  subject to conditions ( 5 . 9 ~ ) ~  (5.10b) and 
(5.10e) to find the liquid temperature field, 

To = l - (h+K) - lC ,  
and the evaporative mass flux, 

Jo = (h+K) - l .  

(5.11) 

(5.12) 

Equation (5.12) is substituted into (5 .10~) ;  we solve (5.6), subject to condition 
(5.10c), to find the pressure in the liquid, 

p ,  = $E2D-'(h+K)-2-3Sh15. (5.13) 

From ( 3 . 3 ~ )  we have $o = (5.14) 

Equations (5.13) and (5.14) are substituted into (5 .5) ;  we solve (5.5), subject to 
conditions (5.9a) and (5.10d), to find the 2-component of the liquid velocity, 

u0 = @ [ $ ~ - h ~ + 2 X P - 1 [ h ( h + K ) - 1 ] ~ ~ ,  (5.15) 

16 FLM 196 
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where @ ( [ , T )  = -3E2D-'(h+K)-3h,-3Sh5,,-3Ah-4h 5' (5.16) 

Equation (5.15) is substituted into (5 .7) ,  which we then solve, subject to condition 
(5.9b), to find the z-component of the liquid velocity, 

(5.17) 

Finally, we substitute (5.15)-(5.17) and (5.12) into ( 5 . 1 0 ~ )  and apply assumption 
(5.3) to obtain the result 

h, + E ( h  +K)-l+ X(h3h,,,), + { [ A  h-l +E2D-*(h +K)-3h3 
+KMP-'(h+h')-2h2]h,}, = 0, (5.18) 

expressed in terms of the (unscaled) physical variables x and t .  Notice that if we 
choose the exponent in (5.14) to be - 4 rather than - 3, then the van der Waals term 
becomes Ah-2. Equation (5.18) represents a major step in the description of 
evaporating films. Rather than having to  solve the free-boundary problem described 
in $2, we need only solve the single partial differential equation (5.18), subject to 
initial conditions. 

6. Numerical method 
Equation (5.18) is a strongly nonlinear partial differential equation. It is solved 

numerically in conservative form as part of an initial-value problem for spatially 
periodic solutions on the fixed interval 0 < x < 2n/k. Centred differences in space are 
employed while the midpoint (Crank-Nicholson) rule is used in time. The difference 
equations are solved by Newton-Raphson iteration. 

The mesh size is taken sufficiently small so that space and time errors are negligible 
(cf. Burelbach 1989). This is accomplished by first fixing the spatial grid while 
reducing the time step for successive computer runs until the change in the computed 
rupture time is negligible. At this point the time step is fixed and the spatial grid is 
refined in a similar way to determine a rupture time which is independent of the mesh 
size. To illustrate this we consider the isothermal case, using rescaled spatial 
dimension X and time T ,  as detailed in $ 7 .  We follow Williams & Davis (1982) and 
divide the wavelength h = 2x/k into N = 10 equal elements of width AX = h/10, 
where k = 2-i is the maximizing wavenumber of linear theory. With this spatial grid 
fixed, we solve the (resealed) evolution equation (7.3) using time steps AT = 0.1,0.04, 
0.01 and 0.001 and find rupture times TR = 5.7,5.64,5.62 and 5.61 1 ,  respectively. We 
see that, for AT < 0.01, the rupture time is not very sensitive to the time step. We 
use AT = 0.01 and increase N until the computed rupture time no longer depends on 
the spatial grid. Figure 3 indicates that  spatial-mesh effects become unimportant 
when N > 20. 

In  the following sections we detail numerical results for an isothermal film and for 
quasi-equilibrium and non-equilibrium evaporation and condensation. In  each case 
we divide the disturbance wavelength into N = 30 equal elements, unless otherwise 
indicated. We employ a maximum time step AT = 0.01, but use smaller time steps 
near rupture. Specifically, when the minimum film thickness is less than (0.65,0.3,0.1, 
0.005), we take AT equal to  (0.001, 0.0002, 0.0001, 0.00001), respectively. 

We note that the values of the non-dimensional parameters which we use in our 
computations are not intended to be physically realistic; rather, they allow us to 
distinguish different physical effects and examine their interactions. 
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N 

FIGURE 3. Rupture time T, ws. spatial mesh size for the isothermal case. The time step is fixed at  
AT = 0.01. The disturbance wavelength h = 2n 4 2  = 8.88 is divided into N equal elements, 
N = h/AX. 

7. Isothermal film 
Consider the case when 2, f l =  O(1), and E ,  E'0-l = o(1)  with K = 0. The leading- 

order problem reduces to that posed by Williams & Davis (1982) for an isothermal 
static film subject to van der Waals attractions and constant surface tension. The 
resulting nonlinear evolution equation governing long-wave interfacial disturbances 
is then 

where A k , S k 3  = O ( 1 ) .  The parameters A and S can be removed from (7 .1)  by 
resealing. We write 

X = ( A / S ) ~ X ,  T = ( A 2 / S ) t ,  (7 .2a ,  b )  
and obtain the canonical form 

(7 -3 )  

Note that X and T are non-dimensional length and time variables related to their 
respective dimensional counterparts by scales (A/&'); do and (A2/&") ( v / d i ) .  

We employ linear stability theory and perturb the base state 6= 1 by a small 
amount h .  We assume normal modes for the disturbance quantity h' of the form 

(7 -4 )  

h, + (h-lh,)x + (h3hxx,)x = 0. 

h'(X, T )  = H ( T )  eikx. 

The resulting ordinary differential equation for the normal-mode amplitude H is 

Ei/H = k'(1-k2) ,  (7 .5 )  

where the dot denotes the derivative, H / H  is the growth rate, and k is the 
disturbance wavenumber. The cutoff wavenumber k = k,  is given by H / H  = 0, SO 

k: = 1 (7 .6)  

and small disturbances grow for all 0 < k < k,. Note from the scaling ( 7 . 2 a )  and 
definitions (3 .3b )  and (3.13) that k, is independent of the viscosity of the liquid. 

16-2 
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FIGURE 4. Film profiles a t  different times for the isothermal case. 
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FIUURE 5. Local behaviour near rupture for the isothermal case. 

Figure 4 shows a numerical solution to (7 .3)  on the interval - x / k M  < X < x/k, ,  
where k, = k , / 2 / 2  is the maximizing wavenumber of linear theory and we use the 
initial condition 

h(X,  0 )  = 1 +0.1 sin ( k , X ) .  

We employ N = 40,  AT Q 0.001, and compute a rupture time TR = 4.2. I f  we follow 
Williams & Davis (1982) and use N = 10, AT = 0.01, we find TR = 5.6,  which 
compares favourably with the Williams/Davis result, TR = 5.7.  However, figure 3 
indicates that the computed rupture time is sensitive to the spatial grid when N = 
10, but when N = 40 it  is not;  TR = 4.2 is more accurate. 

As time T -+ TR, h -+ 0 ,  as shown in figure 4 ,  and (7 .3 )  is singular. We investigate this 
singularity and plot -In (TR-T) vs. -In (h,,,), as shown in figure 5 .  We find that as 
time T increases from 4.1613 to 4.1633 (by time steps of 0.00001) the minimum film 

(7 .7)  
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FIGURE 6. Local 'similarity' film profiles for the isothermal case. 

thickness h,,i, decreases from 0.0393 to 0.0108. During this period near rupture the 
plotted curve has slope near unity, indicating that the minimum film thickness varies 
nearly linearly with time. Later in time this slope deviates significantly from 
unity. 

We now plot h(T,-T)-' us. X, as shown in figure 6, for a time period inclusive of 
the above-mentioned region of nearly linear behaviour. We note that the film 
profiles, and consequently these 'similarity ' profiles, are slightly asymmetric at late 
times. This is most likely due to numerical instability encountered as the coefficient 
matrix becomes nearly singular near rupture ; at that point the numerics break 
down, as suggested by wiggles in the late-time profile of figure 4. These oscillations 
have been minimized by reducing the mesh size. We see that the minimum point for 
each profile in figure 6 remains in about the same position, so we conclude that near 
T = TR the local behaviour is almost like 

h x k ( T R - T ) F ( X ) ,  (7.8) 

where the function F(X) must be symmetric about X = 0. Notice that (7 .8)  is a 
solution of (7 .1)  when surface tension is negligible, 

h,+A(h-'h,), = 0 ,  (7.9) 

subject to the condition at x = 0: 
h, = 0.  (7.10) 

From (5.15) and (5.16) we have for the isothermal case the (leading-order) X -  

(7.11) 
component of velocity 

where we have rescaled according to  (7.2) with Z = z. From (7.8) and (7.11) we see 
that as T --f TR, 2 x h, and u w ( TR -T)-' so that the inertia neglected from (5.5) and 
(5.6) must become important just before rupture. Our evolution equation is only 
valid if inertia is negligible, which means that 

~(U,+UU,+WU,) x k(T,-T)-' + 1, (7.12 a) 

or TR-T S= ki. (7 .12  b )  

u x (h-3 - 3hxx), (i.2'- hZ), 
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If one wants to follow the result to rupture, one must incorporate inertia into the 
evolution equation. We shall be content here to ignore inertia and analyse only as far 
as condition (7.12) allows. The slope of the curve in figure 5 departs from unity a t  late 
times; this may be related to the numerical instability mentioned above, but this can 
be ignored in light of (7.12). 

Note that the numerical value reported here for the rupture time is not accurate 
to the number of digits shown in figure 5. We show the actual value used since the 
computations leading to  the result shown in figure 5 are sensitive to TR. When 
comparing our results with previous work we retain only two significant digits, since 
that is the most accuracy we could expect if the physical values of table 1 were 
employed. Also, the maximum time step (in this case AT = 0.001) limits the 
precision of our computations. Naturally, figure 5 contains some uncertainty since 
numerical instability and our neglect of inertia at late times can both affect the 
computed rupture time. 

8. Quasi-equilibrium evaporation (K = 0) 
In  extending the nonlinear theory to  the case of an evaporating heated film, we 

again take A , R =  0 ( 1 ) ,  but now assume that E , D  = O(1).  We consider first the 
quasi-equilibrium case and take K = 0 so that the interfacial temperature is constant 
and equal to its saturation value. The analysis again includes van der Waals 
attractions and surface tension, but is modified to account for the mass, momentum 
and energy transport of the evaporation process. Thus we include the added effects 
of mass loss, vapour recoil, and cooling due to the loss of latent heat. When K = 0 
the temperature difference across the film is constant, so that the heat flux and thus 
the evaporation rate are expected to  be larger where the film is thinner (cf. Bankoff 
1971). Thus the vapour recoil is greater a t  the troughs than at the crests of the waves 
and clearly destabilizes the layer. Since we now consider a non-isothermal film we 
must solve the energy equation in the liquid, subject to the thermal condition a t  the 
interface and the constant-temperature boundary conditions. 

We set K = 0 in (5.18) and obtain 

h,+Eh-l+[(Ah-'+E2P1) h,],+S(h3h,,,), = 0, (8.1) 

where A k ,  Sk3, Ek-l and DkP3 = O(1). The term proportional to E in (8.1) measures 
the mass loss during evaporation while that  proportional to E2 derives from the 
vapour recoil. The parameters A and S can be removed from (8.1) by again rescaling 
according to (7.2). We obtain the general form 

h, + 6h-I + [(h-' + 9) h,], + (h3hxsx), = 0,  (8.2) 

where 8 = ES/A2 ,  9 = E2D-'S/A2, (8.3a, b )  

Equation (8.2) is not satisfied by h being constant owing to  mass loss. The basic 
= @T) state is a thinning static layer, which is X-independent, and whose thickness 

is given by the leading-order expression 

K = (1 -BET):. (8.4) 

The layer has depth unity a t  time zero and disappears in a finite time T = TD = 
1/28. The slowly varying assumptions that lead to (8.2) break down near T = 0 and 
T = T,, as discussed in $4.1 ; (8.2) holds only in the (long) excluded interval. 
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We employ linear stability theory and perturb the base state k by a small amount 
h'. We use normal modes of the form (7.4) and obtain an ordinary differential 
equation for the normal-mode amplitude H : 

H / H  = & k - 2 + ( h p 1 + 9 )  k 2 - h 3 k 4 .  (8.5) 

The full dynamic behaviour of the perturbed basic state is then described by 

where we use solution (8.4) for h. The term &k-z in (8.5) results from the mass loss and 
gives rise to the coefficient h-' in (8.6). This algebraic behaviour, in contrast with the 
exponential behaviour elsewhere, does not influence the (exponential) instability. We 
may rewrite (8.6) in the equivalent form 

It is useful in interpretation to talk about an eflectice growth rate wE(T), defined as the 
exponent in (8.7) divided by time T. Figure 7 shows a plot of wE(T) us. k2.  We find 
a range of unstable wavenumbers such that 0 < k2 < k;. The cutoff wave- 
number k = k ,  is given by w E ( T )  = 0. We find that the maximum growth rate 
increases with time while the range of unstable wavenumbers gets wider : as &T 4 0, 
wE "N k 2 ( l + 9 - k 2 )  and k E + l + g ,  but as &T-t&T,,, wE z 2k2(1+$9-@2)  and 
kg + 5(1 +f9). The rupture instability is thus augmented by the evaporative effect 
of vapour recoil. We expect the unstable film to rupture a t  some time T, earlier 
than the base-state disappearance time TD. 

Figures 8 and 9 show numerical solutions to (8.2). The computations are equivalent 
to those that produced figure 4 for the isothermal case except that quasi-equilibrium 
evaporation has been included in the analysis. We again consider a disturbance 

k - 2-t, (8.8) 
wavenumber 

M -  

which is the maximizing wavenumber from linear theory for the isothermal case. 
When & = 0.1 and 9 = 1 , we find a rupture time T, = 1.1, which is much less than 
the isothermal result, T, = 4.2, and the film profile evolves as shown in figure 8. 
When & = 9 = 1,  the film ruptures even sooner, a t  TR = 0.34, and the film profile 
evolves as shown in figure 9. We see that the results are quite sensitive to the 
magnitude of the modified evaporation number &. 

We solve the unrescaled equation (8.1) to  obtain figures 10 and 11. Figure 10 shows 
the interaction between quasi-equilibrium mass loss and, vapour recoil when long- 
range forces are negligible ( A  = 0) and 3 s  = 1, k ,  = (3/2)2. When evaporation is also 
negligible (E = E2D-' = 0) surface tension stabilizes the film. When E = 0.1, 
E2D-' = 0, the film ruptures at t ,  = 4.76 due solely to mass loss. When E = 0, 
E2D-' = 1, vapour recoil destabilizes the film, causing rupture a t  t ,  = 2.01. With 
both mass loss and vapour recoil included (E  = 0.1, E2D-' = 1) the film ruptures 
earliest, a t  t ,  = 1.38. 

Figure 11 shows the effects of quasi-equilibrium evaporation on the minimum film 
thickness when van der Waals attractions are important. We take A = 3 s  = 1,  and 
k ,  = (A/2S) i ,  and consider variations in E and D. When evaporation is negligible 
( E  = E2DP1 = 0) the isothermal case is retrieved, with rupture occurring at  t ,  = 1.46. 
When E = 0.1, E2D-' = 0, only mass loss is added to the analysis, and the thinning 
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FIGURE 7. Linear stability results showing the growing range of unstable wavenumbers for 
quasi-equilibrium evaporation. 
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FIGURE 8. Film profiles at different times for quasi-equilibrium evaporation when vapour recoil 
is important (93 = 1) and mass loss is less important (6' = 0.1). 

film ruptures sooner, a t  t, = 0.99. When E = 0,  E2D-l = 1 ,  mass loss is negligible, but 
the destabilizing effect of vapour recoil accelerates rupture to t, = 0.55. When both 
mass loss and vapour recoil are included (E  = 0.1, E2D-l = 1 )  we have t, = 0.49. In 
each case a comparison between figures 10 and 11 clearly illustrates the destabilizing 
effect of van der Waals attractions. 

As time T --f TR, h + 0 and (8.2) is singular. We investigate this singularity and plot 
-In (TR-T) vs. -In (hmin) for several combinations of d and 9. When mass loss is 
absent and vapour recoil is present (8 = 0 , 9  = l ) ,  figure 12 shows that near rupture 
this curve has slope near unity, indicating that the minimum film thickness varies 
nearly linearly with time. Closer to rupture the slope deviates from unity, but this 
is not worrisome since the reliability of our computations is in doubt when we get too 
close to the singularity a t  h = 0. We plot h(T,-T)-l vs. X ,  as shown in figure 13, to 
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FIGURE 9. Film profiles a t  different times for quasi-equilibrium evaporation when vapour recoil 
and mass loss are both important (9 = d = 1 ) .  
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FIGURE 10. Minimum film thickness as a function of time, for various degrees of quasi-equilibrium 

mass loss and vapour recoil, when long-range molecular forces are negligible ( A  = 0, AS = 4). 

illustrate the ‘similarity’ behaviour. In  this case we conclude that near T = TR the 
local behaviour is again like 

= k(TR-T)P(X) ,  

where F ( X )  is symmetric about X = 0. However, when mass loss is important 
(8 = 1 )  we find a slope near rupture of about 1/2, whether vapour recoil is present 
(9 = 1) or not (9 = 0). This indicates that the local behaviour is now like 

h x k(TR- -T) tF(X) .  (8.10) 

This behaviour is nearly identical to the behaviour when the disturbance amplitude 
is zero (the basic state) as indicated by (8.4). When mass loss is present to a lesser 
degree (8 = O . l ) ,  and vapour recoil is still important (9 = l ) ,  the competing effects 
result in a slope near rupture of about 2/3. 

(8.9) 



484 J .  P. Burelbach, S.  G. Bankoff and S .  H .  Davis 

0 0.49 0.55 0.8 0.99 1.46 1.6 

Time, t 

FIGURE 1 1 .  Minimum film thickness as a function of time, for various degrees of quasi-equilibrium 
mass loss and vapour recoil, when long-range molecular forces are important ( A  = 1 ,  S = 5). 
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FIGURE 1 1 .  Minimum film thickness as a function of time, for various degrees of quasi-equilibrium 
mass loss and vapour recoil, when long-range molecular forces are important ( A  = 1 ,  S = 5). 
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FIGURE 12. Local behaviour near rupture for quasi-equilibrium evaporation when mass loss is 
negligible (8 = 0) but vapour recoil is important (2 = 1). 

9. Non-equilibrium evaporation (K  =I= 0) 
We now allow K =I= 0 so as to extend (8.1) to non-equilibrium evaporation. _ _ _ _  In this 

case the interface temperature depends on the fluxes. We again take A ,  S, E ,  D = O( l ) ,  
and also assume P,  K ,  = O( 1)  to retain thermocapillarity. We have the evolution 
equation (5.18): 

h, + E ( h  +K)- l  +S(h3h,,,), + ([Ah-I + E2D-1(h+K)-3h3 
+KHP-l(h+K)-2h-2] h,}z = 0, (9.1) 

where Ak, Sk3, Ek-l, Dk-3 andMk = O(1). The term proportional to M represents the 
thermocapillary effect, which is present since the interface now has non-uniform 
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FIGURE 13. Local 'similarity' film profiles for quasi-equilibrium evaporation when mass loss is 
negligible (8 = 0) but vapour recoil is important (9 = 1). 

temperature. After rescaling according to (7.2) to remove the parameters A and S we 
obtain 

hT+&(h+~) - l+ (h3hxxx) ,+ { [h - l  + ~ ( h + ~ ) - 3 h 3 + ~ ~ ( h + ~ ) - 2 h 2 1  hxlx = 0, 
(9.2) 

4 = MP-'S/A2. (9-3) 

where & and 9 are given by (8.3) and 

Equation (9.2) reduces to (8.2) in the limit K -+ 0, while in the limit K-' + 0 (the non- 
volatile case) (7.3) is retrieved. 

The basic state is again a thinning static layer which is X-independent. In this case 
the leading-order expression for the basic-state film thickness is 

K = -K+ ( K 2  + 2 K +  1 -2bT)i. (9.4) 

The layer disappears in a finite time T = T,, = (1 + K)2/2&,  and the slowly varying 
assumptions again break down near T = 0 and T = T,,. 

We again examine linear stability of the base state, using normal modes of the 
form (7.4), and find the following ordinary differential equation for the normal-mode 
amplitude H : 

Ei/H = 8(K+K)-2- (h)3k4+[(E)- l+9(K+K)-3  (k)3+K&(K+K)-2(h)2] k2. (9.5) 

The full dynamic behaviour of the perturbed basic state is quite complicated : 

-ik2K( 1 + E + K 2  + p )  - 3 K 9  + 2 K A  - ( h + K )  - (1 + K )  +$(K+2K+ 1 )  ( 9 + K A )  
K39 

(9.6) 
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FIQURE 14. Minimum film thickness as a function of time for various degrees of non-equilibrium 
evaporation when some mass loss is present (8 = 0.1) and vapour recoil is important (g = 1) but 
thermocapillarity is negligible (A! = 0). 
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FIQURE 15. Minimum film thickness as a function of time for various degrees of thermocapillarity 
due to non-equilibrium evaporation ( K  = 0.1) when vapour recoil is important (9 = 1) but mass 
loss is negligible (19 = 0). 

The mass-loss effect again enters algebraically, giving rise to the coefficient (1 +K) /  
(E+K)  ; it does not influence the (exponential) instability. The dimensionless groups 
b, 9, A and K influence the algebraic behaviour, appearing as exponents which 
modify the above coefficient. Relative to the quasi-equilibrium result, the effective 
growth rate is either increased or decreased, depending on the relative magnitudes of 
the dimensionless groups. 

Figure 14 shows how different degrees of non-equilibrium affect the evaporating 
film when thermocapillary effects are neglected. As K increases, the layer becomes 
less volatile and thus takes longer to rupture. (When K + co , the non-volatile case is 
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retrieved). When thermocapillarity is important, the rupture time may be greater or 
less than for the quasi-equilibrium case, as shown in figure 15 for the case when mass 
loss is neglected (E  = 0) but vapour recoil is important (59 = 1 ) .  When K = 0.1, 
A’ = 3.9, the rupture time TR = 1.5 coincides with the rupture time for the quasi- 
equilibrium case (K = 0 ) .  We see that non-equilibrium effects destabilize relative to 
the quasi-equilibrium result when A is larger than this critical value A, = 3.9. 
When A’ < A,, stabilization of the rupture and vapour recoil instabilities 
overcompensates for the destabilizing effect of thermocapillarity ; this results in a net 
stabilization relative to the quasi-equilibrium result. 

As time T + TR, h --f 0, and (9.2) is singular. We investigate this singularity and plot 
-In (TR-T) vs. --In (hmin) for each of the cases shown in figures 14 and 15. The case 
of quasi-equilibrium evaporation (K = 0) results in a curve of slope near 213 as T 
approaches TR. Each of the other cases result in a slope near unity. 

10. Condensation 
Suppose that instead of a heated plate we consider a cooled plate maintained at a 

constant temperature T,, where T, is less than the saturation temperature T,. This 
is the case of condensation, or ‘negative evaporation’. We take T, as a reference and 
scale the temperature difference T - T, on the temperature difference AT = T,- T,. 
For condensation the mass flux is negative; it is again scaled on lcAT/d,L. The 
temperature boundary condition a t  the solid surface (3.6b) is now 

T = 0. (10.1) 

K J = T - l .  (10.2) 

At the interface the constitutive equation (3.17) becomes 

The base state is a thickening static layer which is x-independent. The leading-order 
basic-state solution is 

6 = -K + ( K 2  + 2K+ 1 + BEt);, ( 1 0 . 3 ~ )  
!F = (K2  + 2 K +  1 +2Et)-iz, (10.3 b )  
J =  - ( K 2 + 2 K + l + 2 E t ) 4 ,  ( 1 0 . 3 ~ )  

(10.3 d )  = ; E 2 F 1 ( K 2  + 2K + 1 + 2Et)-’. 

A long-wave analysis yields a slightly modified form of (5.18): 

h, -E(h +K)-’ +S(h3h,,,), 
+{[Ah-’ +E2D-’(h + K ) - 3  h3-KKMP-l(h+K)-’ h2] hJZ = 0, (10.4) 

where E and M are again defined to be positive. If we now redefine d and A as 
negative quantities 

d = -ES/A2,  A? = -MP-’S/A2, (10.5a, b)  

and rescale (10.4) according to (7 .2 ) ,  then the result is identical to (9.2). 
We consider the case of quasi-equilibrium condensation (K = 0) and examine 

linear stability theory. The full dynamic behaviour of the perturbed basic state is 
again described by (8.7). However, for condensation d is negative, so that as time 
increases the layer becomes more stable. Figure 16 illustrates how the cutoff 
wavenumber decreases with time, thus shrinking the unstable range and reducing the 
maximum growth rate. Figure 17 shows a numerical solution of (10.4) with k, = 
(3/2);.  In this case the stabilizing effects of mass gain and thermocapillarity are 
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FIGURE 16. Linear stability results showing the shrinking range of unstable wavenumbers for 
quasi-equilibrium condensation. 

0 

X 

FIGURE 17. Film profiles a t  different times for non-equilibrium condensation including mass gain 
( E  = -0.1). vapour recoil (E2D-' = 1) and thermocapillarity (MP' = -1). A = 1 ,  S = +, K = 0.1. 

included, but they still lose the competition with the vapour recoil and rupture 
instabilities. The film ruptures at time t ,  = 0.8, which is still earlier than the 
isothermal rupture time ( t ,  = 1.4) but later than if mass gain and thermocapillary 
effects were negligible (tR = 0.5). 

Figure 18 compares evaporation and condensation results when mass loss/gain is 
negligible. Since vapour recoil is destabilizing in either case, when K = 0 (quasi- 
equilibrium) both cases lead to rupture at TR = 1.5. Similarly, when K = 0.1 and 
thermocapillary effects are neglected (A = 0) both cases lead to rupture a t  T, = 1.9. 
However, the inclusion of thermocapillary effects delays rupture in the condensation 
case (A = - 1, T, = 2.0) but accelerates rupture in the evaporation case (A = 1, 
TR = 1.8). This makes sense physically since surface tension induces a flow directed 
from warmer to cooler regions. For condensation the troughs are cooler than the 
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FIGURE 18. Minimum film thickness as a function of time, comparing non-equilibrium evaporation 
and condensation when mass loss is negligible (& = 0) but vapour recoil is not (9 = 1 ) .  

crests and tend to be ‘filled in’. For evaporation the direction of this induced flow is 
reversed. For each case shown in figure 18, the local behaviour near rupture is 
like 

h x k(T, -T)F(X) .  (10.6) 

11. Quasi-steady linear stability theory 
The stability of systems with interfacial phase change has always been examined 

using quasi-steady stability theory (Palmer 1976 ; Prosperetti & Plesset 1984) when 
the basic state is unsteady, or quasi-parallel theory (cf. Bankoff 1971 ; Marschall & 
Lee 1973; Unsal & Thomas 1978; Spindler 1982) when the basic state involves mean 
flow and the layer grows or decays in the downstream direction. In  the former case 
the approximation supposes that in analysing the stability of a time-dependent basic 
state, that the basic state varies slowly compared with the growth rate of 
disturbances so that one can freeze the basic state a t  an instant and examine its 
stability as if it were a steady state (Davis 1976). We wish to evaluate this approach 
for the present case and consider first the case of quasi-equilibrium evaporation or 
condensation. 

= 1,  the basic-state value a t  t = 0, 
this frozen base state does not depend on time, and (8.5) becomes 

If we assume quasi-steady behaviour and take 

&/H = 6 + ( 1 + 9 ) k 2 - k 4 ,  (11 .1 )  

and the cutoff wavenumber k ,  is given by 

(1 + 9) + [( 1 +9)z + 461; 
2 

k:: = (11.2) 

Equations (1 1.1) and ( 1  1.2) are valid for either evaporation or condensation, € being 
either positive or negative, respectively. Figure 19 illustrates how the growth rate 
H I H  varies with k2; when 6 is positive (negative) (11.1) yields the top (bottom) 
curve. The mass-loss (gain) term appears here as an artifact since what should be an 
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t 

FIGURE 19. Quasi-stwdy linear stability behaviour for evaporation and condensation showing 
how mass losslgain shifts the growth rate curve. 

algebraic contribution to the disturbance amplitude is seen here as an exponential 
one. For the evaporation case this reflects the fact that by quasi-steady theory even 
if the interface is undisturbed (i.e. k = 0) the film is still strongly ‘unstable’. In 
actuality, the film is merely thinning and this thinning is properly part of the basic 
state. Similarly, for the condensation case the undisturbed film is ‘stabilized’ by 
thickening. When the mass-loss (gain) term is not included (€ = 0) ,  but vapour recoil 
is retained (9 =k 0) ,  then (11.2) becomes 

k t = l + 9  (11.3) 

for both evaporation and condensation, and (11 .1)  yields the middle curve in figure 
19. The quasi-steady approximation yields an artifact, in that a t  k = 0 it predicts 
strong instability (stability) for the case of mass loss (gain) whereas the proper time- 
dependent theory gives neutral conditions a t  k = 0 as seen in figures 7 and 16. Note 
that the errors produced by the quasi-steady approximation are largest where 
disturbances, assumed to be rapidly growing, are actually neutral, viz. near k = 0 
and k = k,. 

Consider now the case of non-equilibrium evaporation or condensation. We again 
assume quasi-steady behaviour and take K = 1. Equation (9.5) becomes 

f i / H  = €( 1 + K ) - 2  + [ 1 + 9( 1 +K)-3 + K A (  1 +K)-’] k2 - k4. (11.4) 

The mass-loss (gain) term again appears as an artifact. If it is neglected (8 = 0 ) ,  then 
the critical wavenumber is given by 

lc; = 1 + q i  + K ) - ~ + K A ( ~  + ~ ) - 2 .  (11.5) 

Note that non-equilibrium evaporation (K =k 0, A? > 0) weakens the destabilizing 
effect of vapour recoil, but introduces a thermocapillary instability. Non-equilibrium 
condensation (K  4= 0, A < 0) also weakens the vapour-recoil instability, but now 
introduces a stabilizing thermocapillary effect. 

For K = o(l) ,  equation (11.4) can be approximated to order K as 

H/H = ( 1  - 2 K )  + [1+  g(1-3K)  + K M ]  k2-  k4. (11.6) 
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For evaporation (A > 0) equation (1 1.6) clearly illustrates the competition between 
therrnocapillarity and non-equilibrium vapour recoil. If mass loss is neglected, ( 1  1.6) 
reduces to the quasi-equilibrium result when A!! = 3 9 .  Thus, for small K ,  linear 
theory predicts a critical value A!!cq = 3 9 .  Solution of the full nonlinear evolution 
equation (9.2) with & = 0 and K = 0.1 (figure 15) yields a critical value Ac, = 3.99. 
Thus, when 3.0 < A!!/9 < 3.9, quasi-steady linear theory predicts the thermo- 
capillary effect to be destabilizing, but according to nonlinear theory it is stabilizing. 
We conclude that nonlinearity is stabilizing with respect to thermocapillarity. 

12. Constant heat flux 
Finally, we consider the case in which the bounding plate has a fixed heat flux, 

rather than a fixed temperature, and again allow for evaporative, thermocapillary 
and rupture instabilities. If we use the same formalism as in $ 5 ,  we can derive the 
appropriate (rescaled) evolution equation : 

(12.1) 

Now, however, vapour recoil and thermocapillarity do not appear because it turns 
out that the mass flux and temperature are constant along the interface. For 
evaporation 8 is positive, and the liquid temperature is given by 

h, + 6 + (h-lhx)x + (h3hxx,),  = 0. 

T, = K + h - x .  (12.2) 

The interfacial temperature is T(I) = K ,  and the temperature a t  the heated boundary 
varies as TH = K + h to accommodate the fixed linear temperature profile across the 
perturbed layer. For condensation & is negative, and the liquid temperature is given 

To = -K-h+z. (12.3) 

The interfacial temperature is now T(') = - K ,  and the temperature a t  the cooled 
boundary varies as T, = - K - h. In  each case the base-state film thickness is given 
by the leading-order expression K =  l -E t .  (12.4) 

Clearly the film bounded by a constant-temperature solid surface is more susceptible 
to instabilities driven by non-equilibrium phase change than is the layer on a fixed- 
flux surface. 

by 

13. Discussion and conclusions 
We consider a thin viscous liquid layer bounded above by its vapour and below by 

a uniformly heated (cooled) rigid plane. We concentrate on a limiting case of the two- 
fluid problem so as to decouple the dynamics of the vapour from the dynamics of the 
liquid. This yields what we call the one-sided model of evaporation (condensation). 
We consider long-wave disturbances and derive a strongly nonlinear evolution 
equation (5.18) which governs the stability of the liquid layer subject to  various 
coupled mechanisms. These include mass loss (gain), vapour recoil, thermocapillari ty. 
long-range molecular forces, surface tension, and viscous forces. Equation (5.18) 
represents a major step in the description of evaporating (condensing) films. Rather 
than having to solve the free-boundary problem described in $2, we need only solve 
the single partial differential equation (5.18), subject to initial conditions. We 
analyse both linear and nonlinear stability of the liquid layer according to (5.18), 
using numerical methods in the latter case. Our aim is to distinguish different 
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physical effects and examine t'heir interactions ; the non-dimensional parameter 
values which are used in the discussion are not necessarily physically realistic. 

We consider first the case of an isothermal static film subject to van der Waals 
attractions and constant surface tension. A linear stability analysis of the steady 
base state h = 1 yields a fixed range of wavenumbers for which small disturbances 
grow. We compute a nonlinear rupture time which agrees well with that reported by 
Williams & Davis (1982). However, when the spatial grid is refined to  minimize mesh 
dependence, the computed rupture time is reduced by about 25%. 

When evaporation is considered, the base state is a thinning static layer. A linear 
stability analysis of this time-dependent base state yields a time-dependent range of 
unstable wavenumbers. We define an effective growth rate which excludes the 
algebraic contribution of mass loss. As the film thins, the maximum effective growth 
rate increases while the range of unstable wavenumbers gets wider. The rupture 
instability is thus augmented by the vapour-recoil instability. 

When non-equilibrium evaporation is considered, the interfacial temperature 
depends on the fluxes and destabilizing thermocapillary effects appear. Non- 
equilibrium slows the mass loss, and consequently the vapour recoil, since, as the film 
thins, the interfacial temperature is allowed to increase toward that, of the heated 
plate. A linear stability analysis of the basic state shows that the effective growth 
rate is either increased or decreased, with respect to the quasi-equilibrium result, 
depending on which effect wins the competition between non-equilibrium stabili- 
zation and thermocapillary destabilization. When thermocapillary effects are not 
important, an increase in the degree of non-equilibrium causes the layer to become 
less volatile and increases tshe rupture time. 

When condensation is considered, the basic state is a static layer which grows 
thicker with time. For quasi-equilibrium condensation, a linear stability analysis of 
the base state again yields a time-dependent range of unstable wavenumbers. As the 
film thickens t'his range gets narrower, and the maximum effective growth rate 
decreases. When non-equilibrium effects are included, the mass gain is inhibited ; this 
reduces the vapour-recoil instability. A linear stability analysis of the time- 
dependent base sbate shows that non-equilibrium decreases the effective growth rate 
relative to the quasi-equilibrium result. 

Evaporation and condensation results are best compared when mass losslgain is 
negligible. XJnder the quasi-equilibrium assumption, both cases lead to rupture a t  the 
same time, since vapour recoil is destabilizing for both. Under the non-equilibrium 
assumption, the cases lead to the same result if mass losslgain and thermocapillarity 
are neglected. The inclusion of thermocapillarity delays rupture in the condensation 
case, but accelerates rupture in the evaporation case. 

The above theory, by utilizing the long-wave nature of the instabilities, allows 
analysis of the instabilities of time-dependent' basic states. If one compares these 
results with those using a quasi-steady stability theory, one can evaluate the latter. 
If we take the basic state as frozen at = 1 when examining linear theory, we find 
small-wavenumber artifacts arising. For both evaporation and condensation the 
mass losslgain term gives rise to artifacts that result in vertical shifts in the growth 
rate curve relative to the case when mass loss/gain is neglected. For evaporation this 
indicates instability (i.e. positive growth rate) at zero wavenumber. For condensation 
it indicates stability (i.e. negative growth rat'e) for long waves. Neither interpretation 
is correct. Since the basic state is unsteady, it seems natural to compare the 
disturbance growth rate wit,h the rate of change of the basic state (Shen 1961). The 
case when mass losslgain is neglected yields a more correct linear stability result. 
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It appears that the local behaviour near rupture may be described by the 
'similarity ' form 

h x k( t - t , )PF(x) .  ( 1 3 . 1 )  

The exponent q has the value unity in those cases where mass loss is negligible. 
whereas q = i when it is dominant. When mass loss is significant but not dominant, 
a value of q between i and unity may be appropriate. We note that inertia becomes 
important just before rupture. Our analysis neglects inertia. 

In  the derivation of (5.18) we assume two-dimensional dynamics with h = h(x, t ) .  
If, instead, we allow three-dimensional flow so that h = h(x, y, t ) ,  then we can derive 
the three-dimensional equivalent to the evolution equation. Also, it is easy to 
account for the (stabilizing) effect of gravity. We assume that a/ax and a& are 
comparable, since the disturbance has no preferred direction, and find 

h, + E(h + K ) - l +  v - [Ash3 V(V2h)l 
+ V - {[Ah-' - Gh3 +E2D-l(h + K ) - 3  h3 +KMP-'(h +K)-' h2] Vh}  = 0. (13.3) 

Here V is the usual gradient operator in variables x and y ,  G is a non-dimensional 
measure of gravity g ,  ." 

(13.3) 

and buoyancy is considered negligible. Equation (13.2) corrects and extends the 
three-dimensional result presented by Williams & Davis (1982). The gravity term in 
(13.2) is identical to that given by Davis (1983) for a non-volatile heated film. 
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